Solution Methods for the Periodic Petrol Station Replenishment Problem
نویسندگان
چکیده
منابع مشابه
Solution Methods for the Periodic Petrol Station Replenishment Problem
Abstract: In this paper we introduce the Periodic Petrol Station Replenishment Problem (PPSRP) over a T-day planning horizon and describe four heuristic methods for its solution. Even though all the proposed heuristics belong to the common partitioning-then-routing paradigm, they differ in assigning the stations to each day of the horizon. The resulting daily routing problems are then solved ex...
متن کاملAn exact algorithm for the petrol station replenishment problem
In the Petrol Station Replenishment Problem (PSRP) the aim is to jointly determine an allocation of petroleum products to tank truck compartments and to design delivery routes to stations. This article describes an exact algorithm for the PSRP. This algorithm was extensively tested on randomly generated data and on a real-life case arising in Eastern Quebec.
متن کاملA heuristic for the multi-period petrol station replenishment problem
In the Multi-Period Petrol Station Replenishment Problem (MPSRP) the aim is to optimize the delivery of several petroleum products to a set of petrol stations over a given planning horizon. One must determine, for each day of the planning horizon, how much of each product should be delivered to each station, how to load these products into vehicle compartments, and how to plan vehicle routes. T...
متن کاملThe petrol station replenishment problem with time windows
In the Petrol Station Replenishment Problem with Time Windows (PSRPTW) the aim is to optimize the delivery of several petroleum products to a set of petrol stations using a limited heterogeneous fleet of tank-trucks. More specifically, one must determine the quantity of each product to deliver, the assignment of products to truck compartments, delivery routes, and schedules. The objective is to...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Engineering Research [TJER]
سال: 2013
ISSN: 1726-6742,1726-6009
DOI: 10.24200/tjer.vol10iss2pp69-77